Water entry of a body which moves in more than six degrees of freedom.
نویسندگان
چکیده
The water entry of a three-dimensional smooth body into initially calm water is examined. The body can move freely in its 6 d.f. and may also change its shape over time. During the early stage of penetration, the shape of the body is approximated by a surface of double curvature and the radii of curvature may vary over time. Hydrodynamic loads are calculated by the Wagner theory. It is shown that the water entry problem with arbitrary kinematics of the body motion, can be reduced to the vertical entry problem with a modified vertical displacement of the body and an elliptic region of contact between the liquid and the body surface. Low pressure occurrence is determined; this occurrence can precede the appearance of cavitation effects. Hydrodynamic forces are analysed for a rigid ellipsoid entering the water with 3 d.f. Experimental results with an oblique impact of elliptic paraboloid confirm the theoretical findings. The theoretical developments are detailed in this paper, while an application of the model is described in electronic supplementary materials.
منابع مشابه
An Efficient Strain Based Cylindrical Shell Finite Element
The need for compatibility between degrees of freedom of various elements is a major problem encountered in practice during the modeling of complex structures; the problem is generally solved by an additional rotational degree of freedom [1-3]. This present paper investigates possible improvements to the performances of strain based cylindrical shell finite element [4] by introducing an additio...
متن کاملThe Effect of Asymmetric Water Entry on the Hydrodynamic Impact
The effect of the asymmetric water entry over a submerged part of a ship on the hydrodynamic impact is investigated numerically. A wedge body is considered to study and the problem is assumed to be two-dimensional. The Results of symmetric and asymmetric impacts are compared together. The effect is found significant in the numerical simulation. The maximum hydrodynamic pressure at a heel angle ...
متن کاملVertical Dynamics Modeling and Simulation of a Six-Wheel Unmanned Ground Vehicle
Vertical dynamics modeling and simulation of a six-wheel unmanned military vehicle (MULE) studied in this paper. The Common Mobility Platform (CMP) chassis provided mobility, built around an advanced propulsion and articulated suspension system gave the vehicle ability to negotiate complex terrain, obstacles, and gaps that a dismounted squad would encounter. Aiming at modeling of vehicle vertic...
متن کاملThe Kinematic Analysis Of Four Degrees Of Freedom For A Medical Robot And Control It By Labview And Arduino Mega2560 (Simulation And Implementation)
ABSRACTThis study presents the kinematic analysis of a four-degree freedom medical robotic arm using the Matlab and the robotic-tool, the arm was designed using a solid work program, As well as details of the control of the real design of this arm using Arduino Mega 2560, The specialist enters the position to be reached by the automatic arm (injection position), Or moving the arm to any p...
متن کاملA feasibility study of dynamic verification for tumor target delineation and dose delivery using a six degrees of freedom motion phantom
Background: The dynamic phantom is one of the best tools to study the impact of motion on tumor target delineation and absorbed dose verification during dose delivery. Materials and Methods: this study, a 6-DOF (degrees of freedom) phantom was designed following the stacked serial kinematics and assembled by six commercial motion stages to generate 6-DOF motion, which were RotX (pitch, around X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 471 2177 شماره
صفحات -
تاریخ انتشار 2015